Hierarchical classification of protein function with ensembles of rules and particle swarm optimisation

نویسندگان

  • Nicholas Holden
  • Alex Alves Freitas
چکیده

This paper focuses on hierarchical classification problems where the classes to be predicted are organized in the form of a tree. The standard top-down divide and conquer approach for hierarchical classification consists of building a hierarchy of classifiers where a classifier is built for each internal (non-leaf) node in the class tree. Each classifier discriminates only between its child classes. After the tree of classifiers is built, the system uses them to classify test examples one class level at a time, so that when the example is assigned a class at a given level, only the child classes need to be considered at the next level. This approach has the drawback that, if a test example is misclassified at a certain class level, it will be misclassified at deeper levels too. In this paper we propose hierarchical classification methods to mitigate this drawback. More precisely, we propose a method called Hierarchical Ensemble of Hierarchical Rule Sets (HEHRS), where different ensembles are built at different levels in the class tree and each ensemble consists of different rule sets built from training examples at different levels of the class tree. We also use a Particle Swarm Optimisation (PSO) algorithm to optimise the rule weights used by HEHRS to combine the predictions of different rules into a class to be assigned to a given test example. In addition, we propose a variant of a method to mitigate the aforementioned drawback of top-down classification. These three types of methods are compared against the standard top-down hierarchical classification method in six challenging bioinformatics datasets, involving the prediction of protein function. Overall HEHRS with the rule weights optimised by the PSO algorithm obtains the best predictive accuracy out of the four types of hierarchical classification method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hierarchical Classification of G-protein-coupled Receptors with a Pso/aco Algorithm

In our previous work we have proposed a hybrid Particle Swarm Optimisation / Ant Colony Optimisation (PSO/ACO) algorithm for discovering classification rules. In this paper we propose some modifications to the algorithm and apply it to a challenging hierarchical classification problem. This is a bioinformatics problem involving the prediction of G-ProteinCoupled Receptor’s (GPCR) hierarchical f...

متن کامل

Modified CLPSO-based fuzzy classification System: Color Image Segmentation

Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...

متن کامل

S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization

Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...

متن کامل

A New Solution for the Cyclic Multiple-Part Type Three-Machine Robotic Cell Problem based on the Particle Swarm Meta-heuristic

In this paper, we develop a new mathematical model for a cyclic multiple-part type threemachine robotic cell problem. In this robotic cell a robot is used for material handling. The objective is finding a part sequence to minimize the cycle time (i.e.; maximize the throughput) with assumption of known robot movement. The developed model is based on Petri nets and provides a new method to calcul...

متن کامل

Improvement of Left Ventricular Assist Device (LVAD) in Artificial Heart Using Particle Swarm Optimization

In this approach, the Left ventricular assist pump for patients with left ventricular failure isused. The failure of the left ventricle is the most common heart disease during these days. Inthis article, a State feedback controller method is used to optimize the efficiency of a samplingpump current. Particle Swarm Algorithm, which is a set of rules to update the position andvelocity, is applied...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Soft Comput.

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2009